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The stability of Poiseuille flow in a pipe of circular cross-section to azimuthally 
varying as well as axisymmetric disturbances has been studied. The perturbation 
velocity and pressure were expanded in a complete set of orthonormal functions 
which satisfy the boundary conditions. Truncating the expansion yielded a 
matrix differential equation for the time dependence of the expansion coeffi- 
cients. The stability characteristics were determined from the eigenvalues of the 
matrix, which were calculated numerically. Calculations were carried out for 
the azimuthal wavenumbers n = 0, . . . , 5 ,  axial wavenumbers a between 0- 1 and 
10.0 and aR 6 50000, R being the Reynolds number. Our results show that 
pipe flow is stable to infinitesimal disturbances for all values of a, R and n in 
these ranges. 

1. Introduction 
The stability of Poiseuille flow in a pipe of circular cross-section has been of 

continuing interest since Reynolds’ classic experiments. Beginning with Ray- 
leigh’s (1892) paper, there have been a number of theoretical investigations of 
the stability of this flow. Rayleigh studied the inviscid stability of Poiseuille 
flow and concluded that the flow was stable to infinitesimal disturbances. He 
conjectured that the flow might be stable to infinitesimal disturbances but 
unstable to finite disturbances, or that the inviscid theory might be completely 
inapplicable to this problem. 

A number of authors, including Sex1 (1927), Synge (1938), Pretsch (1941), 
Pekeris (1948), Tatsumi (1952), Corcos & Sellars (1959), Schensted (1960), Gill 
(1965) and Davey & Drazin (1969), have studied theoretically the stability of 
Poiseuille flow to axisymmetric disturbances for all values of the Reynolds 
number. 

Following Reynolds’ experiments, there have been a number of other experi- 
mental studies of the stability of Poiseuille flow (see Dryden (1959) for a dis- 
cussion of some of these experiments). These have all shown that, by excluding 
disturbances, the onset of instability can be delayed to very high Reynolds 
numbers. This appears to support the idea that the observed instabilities are 
due to finite amplitude effects. 
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On the other hand, it might be expected, by analogy with plane Poiseuille 
flow, that the axisymmetric disturbances would be stable. (In plane Poiseuille 
flow no growing disturbances with the same symmetry as the base flow have 
been found. The growing disturbance has opposite symmetry to the base flow.) 
It is therefore necessary, before concluding that Poiseuille flow is stable to 
infinitesimal disturbances, to examine the stability of this flow to non-axisym- 
metric disturbances. Recent experiments by Lessen, Fox, Bhat & Liu (1964) 
and Fox, Lessen & Bhat (1968) on the growth of non-axisymmetric disturbances 
confirm the importance of studying such disturbances theoretically. 

In  the work reported here we have studied the stability of Poiseuille flow to 
disturbances with an azimuthal variation of the form eine for n = 0, ..., 5. A 
preliminary report (Salwen & Grosch 1968) of this work was presented at  the 
1967 meeting of the Division of Fluid Dynamics of the A.P.S. Lessen, Sadler & 
Liu (1968) have independently studied the n = 1 modes by a different numerical 
method; there have also been recent analytic studies by Burridge & Drazin 
(1969) and Graebel(l970). 

The method which we have used consists of expanding the perturbation 
velocity and pressure in a complete set of orthonormal functions which satisfy 
the boundary conditions. Truncating the expansion yields a matrix differential 
equation for the time dependence of the expansion coefficients. The stability 
characteristics are determined from the eigenvalues of the matrix, which are 
calculated numerically. 

In $ 2  we formulate the solution in terms of orthogonal functions and in $ 3  
we derive the expansion functions. Section 4 contains a discussion of the accuracy 
of the calculations. The results for the n = 0 modes and comparisons with the 
work of previous investigators of these axisymmetric modes are given in $5.1. 
In  $5.2 we give our results for n = 1, ..., 5 and compare them with those of 
Lessen et al. (1968), Burridge & Drazin (1969) and Graebel (1970). Section 6 is 
a brief statement of our conclusions. 

2. Formulation 
We wish to study the stability of Poiseuille flow in a circular pipe. That is, we 

consider the base flow to be the laminar flow of an incompressible fluid in a 
circular pipe under the influence of a constant pressure gradient. The velocity 
profile is then the familiar parabolic profile with maximum speed W, on the 
centre-line. In  the remainder of this paper, dimensionless variables will be used: 
the length scale is r,, the radius of the pipe; the velocity scale is W,; the time 
scale is ro/W, and the pressure scale is p W;, where p is the density. The Reynolds 
number of the flow is R = Woro/v, where v is the kinematic viscosity. Cylindrical 
co-ordinates (r, 8, z )  will be used, with r = 0 at the centre-line of the pipe and x 
increasing in the downstream direction. The base flow is, in this co-ordinate 
system, 

(1) v = W ( r ) &  = ( 1 4 ) k  

Consider a small disturbance to the flow. The velocity is then V + v  and the 
pressure is P + p ,  where V and P are the velocity and pressure of the base flow 
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and v and p are the velocity and pressure arising from the disturbance. By 
substituting into the Navier-Stokes equations, noting that V and P already 
give a solution and retaining only terms which are linear in v, we find that v 
and p satisfy 

v . v =  0, (2) 

(3) 
av 1 
at R - + V(V . v) - v x (V x v) - v x (V x V) = - - v x (V x v) - vp. 

We shall consider the 'timewise' problem, i.e. the growth or decay of distur- 
bances as a function of time. Since the base flow and (2) and (3) are invariant 
with respect to translations in the z direction and rotations about the z axis, 
the normal modes will be of the form 

p = IIo(r, t) ei(ne+ac), 

v = [uo(r, t )  B? + vo(r, t )  B, + w0(r, t )  &I ei(ne+az), 

(4) 

( 5 )  

where a is an arbitrary real number and n is an integer. Finally, the boundary 
conditions are that the velocity is zero on the walls of the pipe, i.e. 

v = 0 for r = 1, (6) 

and that v and p are bounded. 

solutions (with eigenvalue A,) of 
We now choose a set of expansion functions v, and pl, which are the eigen- 

v.v,  = 0, (7) 

(8) A,vz = - (1/R) v x (V x v,) - vpz 

(equation (3) with V = 0 and A, replacing a/at), having the same B and z depen- 
dence and satisfying the same boundary conditions as the disturbances. It is 
easily shown that 

- '$1 O k ,  vZ> = 111 [hz V z  . Vz - V z  . hzVz] dT = 0, (9) 

where the inner product (f, 9 )  is defined by 

(f,g) = SfSf*.gd7., 

the star indicates the complex conjugate, and the integration is over a volume 
within the pipe bounded by two planes perpendicular t o  the axis of the pipe 
and one wavelength ( =  27r/a) apart. Then, with appropriate normalization, 

and the eigenvalues are real. 
Assuming that the expansion functions are known (they will be derived in 

detail in $ 3  below), we expand the disturbance velocity v in a series in the 
functions vk: 

(vk, vl) = (11) 
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Each term in this expansion satisfies the continuity equation ( 2 )  and the boundary 
conditions.? 

From (13) we have 

da,/dt = (vk, &/at) 
= (v,, -V(V.v) + V  x (V x V) + V  x (V x V) - (l/R) V x (V x V) -Vp) 
= (V x (Vk x V) -v, x (V x V), v)+A,(v,, v) 

= c G,,q+A,a,, (14) 

(15) 

00 

1=1 

where 

Equation (14) determines the time dependence. of the disturbances. We now 
turn to the solution of the eigenvalue equations (7) and (8) in order to determine 
the coefficients A, and Gkl. 

G,, = (V x (vk x V) -v/< x (V x V), vt), 

3. Expansion functions 

scripts for convenience, we define w(r, 0) and v,(r, 8 )  by 
The expansion functions are the solutions of (7) and (8). Dropping the sub- 

w(r, 0 )  = r(.ve-inz, (16) 

(17)  vL(y, e)  = -L x (L x v) e- '%a, 

so that 
We similarly define po(r, 0) by 

v = (v,+ wk) eimz. 

po(r, 0) = pe-ia". 

Then (7) and (8) become V.v,+iaw = 0, (20) 

(8' - a' - AR) V, = RVpo, (21) 

(V2 - a2 - AR) w = i a R ~ 0 .  (22 )  

@ = ( - 1 / 4  Po, (23) 
Y = ( - i /a)  (v, - VQ), (24) 

(V'-CX')@ = (-l/hR)(V2-~2-AR)(V.vL+iaw) = 0: ( 2 5 )  

(V2 - a2 - AR) Y = ( - i/a) [(V' - a2 - AR) V, - RVpo] = 0, ( 2 6 )  

If we define scalar and vector potentials @(r,  0) and Y(Y, 0) by 

these potentials must satisfy 

and 

In terms of @ and Y we have 

v, = vo + iaY, 
w = (i/a)V.v, = ia@--V.Y, 

po = -A@. (29) 
Note that p will, in general, not be equal to Cakpk. In  fact, V2pk = 0 for all k ,  and 

Vap  + 0. These considerations do not affect the validity of the velocity expansion because, 
since ( V k ,  V p )  = 0, the pressure term drops out of equation (14). 
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It is apparent that, with v,, w and p o  given by (27), (28) and (29) and the poten- 
tials obeying (25) and (26), the eigenvaJue equations (20), (21) and (22) will be 
satisfied. 

In  order for p and v t o  satisfy (4) and (5) we must have 

CD = $(r)  eino, (30) 

(31) Y = [$,.(r) C,.+ Ilro(r) go] cine. 
If (31) is substituted into (26) a pair of coupled equations for $,, and +o will 
result. These can be decoupled by defining 

$& = $($r * i$o). 
(Ln-a2) $5 = 0, 

Equations (25) and (26) then yield 

(Lnkl - a2 - AR) $+ = 0, 

where 

The boundary condition (6) then becomes 

The solutions of (33) and (34) are 

where Jnkl are Bessel functions and In a modified Bessel function, both of the 
first kind, and 

p = [-AR-a2]6. (40) 

When the solutions (38) and (39) are substituted into the boundary conditions 
(36) and (37) we obtain homogeneous linear equations for the constants C,, C+ 
and C-. The secular determinant yields the eigenvalue equation 

Apart from the trivial root P = ia (which leads to $5 = 0, q?& = 0) ,  all the eigen- 
values of p are real and can be found by an appropriate iteration procedure. 

Once the eigenvalues 
A, = ( -  1 p )  (a2+Pl) 

have been obtained, the calculation of the potentials and the expansion functions 
is straightforward. 

7 F L M  54 
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4. Numerical calculations 
4.1. Method of calculution 

We now assume that the expansion for the disturbance velocity v can be trun- 
cated after N terms, i.e. in (12) we put 

N _ .  

v c a,(t)v,. (43) 
k = l  

Then the a,, k = 1,2, .. ., N ,  are a solution of (14): 

In  matrix notation, we have 
dAld t  = FA, (45) 

where A is the column vector of the ak and F is the ( N  x N )  matrix defined by 

Equation (45) possesses a complete set of solutions of the form 

A, = Qkeuk t ,  (47) 

vlc being an eigenvalue of F. If ‘T, is a simple eigenvalue, then Q, is a constant, 
but if v, is a multiple eigenvalue, of multiplicity K ,  say, then Qk is a polynomial 
of degree K -  1. The flow will be stable only if all of the eigenvalues of F have a 
negative real part. If there is any eigenvalue with a positive real part then the 
flow will be unstable with an exponential growth. It is also possible for the 
flow to be unstable with an algebraic growth in time. This will occur if there is 
a multiple eigenvalue with the real part identically zero. Thus the stability 
characteristics of the flow are completely determined by the eigenvalues of F. 

The eigenvalues of F were calculated numerically using the QR algorithm 
(Parlett 1967). The calculation of all of the eigenvalues of F, when F is 30 x 30, 
takes about 2 min on an IBM 360140 and the calculation time is proportional 
to N3. 

The results will be given in this paper in terms of the complex wave speed of 
the disturbance, c,, instead of vlc. These are related by 

‘T, = -iac;. (48) 

Im(c,) < 0. (49) 

The flow will thus be unstable if, for some k, 

The eigenvalues are numbered in the order of increasing imaginary part of ck. 
The order is taken to be that at  small R. 

4.2. Accuracy 
The method of this calculation is essentially the same as that used in our cal- 
culation of plane Poiseuille flow (Grosch & Salwen 1968). In  that case exact 
agreement was obtained with the four-significant-figure eigenvalues obtained by 
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N = 2  N = 30 
I r 

Re ( c )  Im (4 Re ( c )  Im (c )  
0.463831 1.39190 

0.765128 2.79932 0.764578 2.80969 
a: = 1 0 - 4 , ~  = 105 0.647287 1.44481 0.647740 1-4432 1 

0.815926 2.66085 0.815293 2.66518 

a = l , R = 1 0  0.463727 1.38289 

TABLE 1. Two examples of convergence for aR = 10, fi = 1. The first two eigenvalues 
are listed for N = 2 and N = 30 and two different values of (a, R )  

Thomas (1953) by an altogether different numerical method. Comparisons 
between our present results and other work on pipe flow are given in $ 5  of this 
paper. 

It is unlikely that significant errors have been made in the solution of the 
truncated problem (equation (45)). The most likely sources of error in this 
calculation are our Ressel function routine (used to evaluate the eigenvalues 
A, of the expansion functions as well as in explicit formulae for the F,J, our 
iterative routine for the A, and our matrix eigenvalue routine. Our Bessel 
function routine has been checked against published tables and is accurate to 
about one part in lo7.  The iteration for the eigenvalues of the expansion function 
was continued until the relative error was less than 2 x lo-*. The QR algorithm 
used to calculate matrix eigenvalues is renowned for its stability. The particular 
program we used is a modification of Parlett’s (1967) routine and contains (as an 
internal check) a comparison of the trace with the sum of the eigenvalues. 
Under most circumstances no individual root contains an error much larger 
than that in the eigenvalue sum. By these criteria we estimate that the eigen- 
values of F have been calculated to six significant figures. 

The remaining source of error is truncation (the fact that we have used a 
finite matrix instead of an infinite one). This clearly can produce significant 
errors. The best way to study the effect of truncation on accuracy is to compare 
the eigenvalues of the same problem for different values of N ,  that is, the coii- 
vergence of the calculated eigenvalues as N increases. This is discussed in the 
following section. 

4.3. Convergence 
As would be expected from our choice of expansion functions, the convergence 
of this expansion is extremely rapid for sufficiently small values of aR (less 
than or about equal to 20). Two examples of this convergence are given in 
table 1. It is clear that in these cases (aR = 10 for both) the eigenvalues cal- 
culated from a two-term expansion have already converged to better than l %. 

For larger values of aR, convergence is slower and it is necessary to use larger 
matrices. If  N is too small, the c’s vary wildly with small changes in N ;  it is even 
possible to  find spurious instabilities (negative Im (c ) ) .  Once N is large enough 
the first one or two C’S are found t o  have convexged, or almost so; other low- 
lying modes have also nearly converged but are scattered among a number of 

7-2 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

N = 70 N = 30 N = 50 - ---7 v---\ 
Re ( c )  

0.951583 
0-251 741 
0.410591 
0.31 6216 
0.502885 
0.583306 
0.660988 
0.977104 
0.921227 
0.728593 
0.790592 
0.844352 
0.890355 
0.13233 1 
0.950596 

Im ( c )  
0.022690 
0.027474 
0 031003 
0.036548 
0.040384 
0.042203 
0.04753 1 
0.048454 
0.048791 
0.051039 
0.055377 
0.059139 
0.062299 
0.075175 
0.079335 

Re ( c )  
0.951583 
0,276663 
0.977105 
0.920732 
0.890843 
0.950690 
0.146491 
0.861460 
0.923686 
0.391 871 
0.831822 
0.896402 
0.254985 
0.804990 
0.868925 

Im ( c )  
0.022686 
0.037047 
0.048455 
0.048917 
0.075781 
0.079258 
0.080631 
0.102775 
0.109138 
0-127081 
0.130745 
0.138606 
0.141122 
0.158852 
0,167659 

Re ( c )  
0.951583 
0.276712 
0.977104 
0.920732 
0.890842 
0.950690 
0.146507 
0.861464 
0.923686 
0.391506 
0.831828 
0.896401 
0.254962 
0.80491 2 
0.868922 

Im ( G I  

0.022687 
0.037022 
0.048455 
0.04891 7 
0.075782 
0.079258 
0.080593 
0.102767 
0.109138 
0.127305 
0.130781 
0.138608 
0.141 111 
0.158747 
0.167663 

TABLE 2. The first Hteen eigenvalues, arranged in order of increasing imaginary part of 
G ,  for three different sizes of the matrix; N = 30, 50 and 70. For all N, cx = 1.0, R = lo4  
andn = 1. 

spurious modes. With increasing N ,  these spurious modes vary rapidly and 
eventually disappear until finally an appreciable number (depending on a, R 
and n) of eigenvalues converge. 

A typical example of this behaviour at  larger aR is given in table 2. In this 
example, a = 1.0, R = lo4 and n = 1. The first fifteen eigenvalues, arranged in 
order of increasing imaginary part of c, are tabulated for three different sizes 
of the matrix (N = 30, 50 and 70). We have also carried out calculations with 
the same values of a, R and n for N = 20, 40, 60 and 80. From an examination 
of the results for N = 60, 70 and 80, it  is apparent that the 15 eigenvalues shown 
have converged to at  least four significant figures for N = 70. 

With N = 20 (results not shown) the accuracy was so poor that 5 of the c’s 
had negative imaginary parts, and it was not possible to identify any of the 
eigenvalues with members of the converged set. Examining table 1 shows that 
with N = 30 the first eigenvalue has converged to 5 significant figures while the 
second is within 10% of its converged value. With N = 30, eigenvalues 3-7 
and 10-12 are spurious eigenvalues and have no counterparts in the final 
converged set. The eigenvalues which are numbers 3 and 4 for N = 70 are 
numbers 8 and 9 with N = 30, and those which are 5, 6 and 7 at N = 70 are 13, 
15 and 14, respectively, at  N = 30. Eigenvalues 8-15 at  N = 70 have no counter- 
parts at  N = 30. 

It is clear, from the results shown in table 1, that the slow modes (numbers 
2, 7, 10 and 13 at N = 70) converge somewhat slower than the fast modes. We 
have found that this is generally true for large aR. 

Finally, the order of modes at  high R, as given in this table, is not the same 
as the order of the modes at low R which we use to number the modes. This is 
due, as will be seen below, to the cross-overs of the eigenvalues as R varies. 
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The least stable (lowest) mode at  small R is also the least stable mode at  suffi- 
ciently large R but for the other modes there can be considerable change in the 
order from small to large R. Here, at  N = 70, mode 1 is the first mode in the 
table but mode 2 is seventh, mode 3 is third and mode 4 is second. 

It should be pointed out that when there are two almost degenerate eigen- 
values (both real and imaginary parts) the error in calculating them may be 
considerably larger than that of the other eigenvalues. This happens because 
both truncation errors and small errors in calculating off-diagonal matrix elements 
normally influence the eigenvalues to second order but in the case of degeneracy 
may produce first-order effects. 

5.  Results 
5.1. Rotationally symmetric modes 

In  figures 1 (a) and (b)  we have plotted our results for the real and imaginary 
parts of the first six eigenvalues as functions of R for a = 1 and n = 0 and 
shown the comparison with various asymptotic approximations. The modes are 
numbered according to the magnitude of Im(c) at low Reynolds number. 
With this ordering, the odd modes are torsional and the even modes are meri- 
diona1.f- The solid lines on these figures are our numerical results; the dashed 
lines are obtained from asymptotic calculations. 

In  the region aR 5 500, the dashed curves for the meridional modes (2, 4 
and 6 )  have been calculated from an approximation due to Pekeris.f The 
dashed curves for the torsional modes (1, 3 and 5) were calculated by using an 
extension of Pekeris’s method. The agreement with our results at low R is 
excellent. As R 3 0, the difference between dashed and solid curves is not visible. 

Pekeris has also developed a second asymptotic approximation,§ valid for 
those modes for which Ic1 M 1 when aR+m with a not too large. Though this 
approximation was derived for meridional modes, it is easily seen from an 
extension of Pekeris’s method that to each meridional eigenvalue calculated by 
this method there corresponds a torsional eigenvalue approximately equal to it. 
The high R curves labelled P in figure 1 are calculated by this asymptotic 
method (P1 is the least stable of these modes and P2 is the next one). The points 
on these curves correspond to both torsional and meridional eigenvalues since 
our calculation (in agreement with the comment above) gives almost equal 
(to 0.1 yo) values for these pairs of eigenvalues. Again it may be seen that our 
results are in such good agreement with those of Pekeris that the curves merge 
at high R. These modes have both [l -Re (c)] and Im (c) proportional to (aR)-3. 
We call these the ‘fast ’ modes since the wave speed Re (c) approaches unity as 
ER-tW. 

In  addition to the ‘fast’ modes discussed in the preceding paragraph there 
are, at high R, various normal modes with Re(c) ranging from 0 to about $. 

t For torsional modes u,, = wo = 0 and for meridional modes oo = 0, see Pekeris (1948, 

$ See Pekeris (1948, equation (37)). 
J See Pekeris (1948, equation (44)). 

p. 287). 
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I I I 

10‘ 1 o2 103 104 105 
0 

R 

h 

E ‘ I  

R 
FIGURE 1. Variation of (a)  the real part of the first six eigenvalues (i.e. the wave speed) 
and ( b )  the imaginary part with the Reynolds number for the ctvisymmetric (n = 0) mode. 
The axial wavenumber a = 1.0. Solid curves are the results of our numerical calculations 
and the dashed curves are various asymptotic approximations discussed in the text. 
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0 2 4 6 8 10 12 14 16 18 20 
R x lo-* 

FIGURE 2. Curves of constant Re (ac)  and Im (ac) for the least stable axisymmetric 
mode (n = 0) in the a, R plane. The solid lines are the results of our numerical calcula- 
tion and the dashed curves are the results of a numerical calculation of Davey & Drazin 
(1969). 

Corcos & Sellars (1959), in addition to reproducing Pekeris’s IcI z 1 approxi- 
mation, have developed two different asymptotic approximations which should 
be valid for meridional modes with c fi: 0. We call these the ‘slow’ modes. The 
curves CS in figure 1 are calculated by one of these approximations. Modes 3 
and 4 are the least stable of the slow modes. CS1 and GS2 refer to the two least 
stable slow modes as calculated by Corcos & Sellars. As can be seen in figure 
1 (a) ,  the real parts of modes 3 and 4 are approximately in agreement with CS1 
and CS2, respectively. In  figure 1 (b )  it can be seen that at  high R the curve for 
CS1 merges with that of mode 4 and is approximately equal to that of mode 3, 
but, surprisingly, CS2 is considerably different. These slow modes have both 
Re (c) and Im (c) proportional to  (aR)-+. It is clear that the functional dependence 
of our numerical results is the same as that of the analytic results of Corcos & 
Sellars. 

We have carried out a number of calculations for other values of a and R. 
Figure 2 shows some of these results and a comparison with the results of a 
numerical calculation of Davey & Drazin (1969). This figure is a plot of the 
curves of constant Re (ac) and Im (ac) in the a, R plane for the least stable mode, 
with the results of Davey & Drazin (1969) (dashed curves) superposed upon the 
graph of our results (solid curves). As can be seen, the agreement is good. 

5.2. Azimuthally varying modes 
In  addition to the azimuthally symmetric mode n = 0, we have studied the 
azimuthally varying modes, n = 1-5, for 0-1 6 a 6 10.0 and aR < 50000. We 
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R 

FIGURE 3. Variation of (a) the real part and ( b )  the imaginary part of the first four eigen- 
values with Reynolds number for the first (n. = 1)  azimuthally varying mode. The axial 
wavenumber a = 1.0. Solid curves are the results of our numerical calculation and 
dashed curves the results of numerical calculations of Lessen, Sadler & Liu (1968). 
Dashed lines showing an R-1, R-* and R-4 variation are also shown. 

R 
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FIGURE 4. Variation of (a) the real part and ( b )  the imaginary part of the first four eigen- 
values with Reynolds number for the second (n = 2) azimuthally varying mode. The 
axial wavenumber u = 1.0. The dashed lines show an R-1, R-4 and R-4 variation. 
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I I I I 8 

10' 103 10' 104 
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R 

FIGURE 5. Variation of (a) the real part and ( b )  the imaginary part of the first four eigen- 
values with Reynolds number for the third (.n = 3) azimuthally varying mode. The axial 
wavenumber a = 1.0. The dashed lines show an R-l, R-B and R-5 variation. 



Stability of Poiseuille $ow 107 
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(4 0.2 - 
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n I I 1 I I I I " 

10' 102 1 0 3  I OJ 105 
R 

05 

FIGTJRE 6. Variation of (a) the real part and ( b )  the imaginary part of the first four eigen- 
values with Reynolds number for the fourth (m = 4) azimuthally varying mode. The 
axial wavenumber a = 1.0. The dashed lines show an R-I, R-4 and R-) variation. 
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FIGURE 7. Variation of (a)  the real part and ( b )  the imaginary part of the first four eigen- 
values with Reynolds number for the fifth (n = 5 )  azimuthally varying mode. The axial 
wavenumber a = 1.0. The dashed lines show an R-I, R-* and R-i variation. 
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have found in all cases considered that the flow is stable to infinitesimal dis- 
turbances. 

Figures 3-7 show the real and imaginary parts of c for the four lowest modes 
for ct = 1.0, R < 20 000, and n = 1-5. Lessen et al. (1968)T have calculated c in 
the same range for n = 1 by numerical integration. Their results are compared 
with ours on figures 3 (a) and (b).  As can be seen from figure 3,  there is fairly 
good agreement between our results and those of Lessen et al. except for R near 
250, where our eigenvalue 2 and their corresponding eigenvalue Bi differ con- 
siderably. This is just the region where c1 and c2 lie close to each other in the 
complex plane. Such a near degeneracy is capable of causing errors in our 
method as explained in $4.2. It can also cause an instability in a numerical 
integration (such as that of Lessen et aZ.), which might have led to errors in 
their results. 

The general behaviour of the eigenvalues, as shown by the curves of figures 1 
and 3-7, is quite similar. As R-t 0, the eigenvalues approach the eigenvalues 
of the expansion functions asymptotically. In the transition from low to high 
R the behaviour of the eigenvalues is extremely complicated; there are cross- 
overs or near cross-overs of the curves of Re (c) and Im ( c ) .  Usually it is possible 
to trace unambiguously the curves for the eigenvalue of a given mode through 
a cross-over because the eigenvalue is complex and the real parts do not cross 
at the same R at which the imaginary parts cross and vice versa. It should be 
noted that such cross-overs do not represent degeneracies, which can only occur 
if both the real and imaginary parts are equal. 

The only case of a near degeneracy is that for modes 2 and 3 for n = 3 and 
R z 125. Calculations had to be made at intervals of 1.0 in R in order to elucidate 
the behaviour of these modes and it is still not completely clear. As shown in 
figures 5(a) and (b )  the real parts cross while the imaginary parts repel. The 
approach of the imaginary parts is so close that a case could be made for a 
cross-over of the imaginary parts and a repulsion of the real parts. The curves 
of the real part of c for modes 2 and 3 would then have cusps at this point. We 
believe that the crossing over of the curves is much more likely than their 
having cusps. In either case, or even in the case of a true degeneracy, the only 
thing at stake is the label of a particular mode since modes 2 and 3 have the 
same asymptotic behaviour as R -+ co. 

The behaviour of the roots as R-t co is similar for all n. The low-lying modes 
always group into fast and slow modes, although there is some variation with 
n affecting which of the low R modes becomes a fast mode and which a slow mode. 
However, the least-stable mode for this flow is always (R  sufficiently large) a 
fast mode, in contrast to plane Poiseuille flow, where the least stable mode is a 
slow mode and the flow becomes unstable. 

We have made many calculations of G for different values of n, a and R. In 
all cases the behaviour of the roots is similar to that shown in figures 1-7. We 
have found that, for aR -t co, the low-lying fast modes are of the form 

C, = [i - A,(ctR)-i] + iB,(ctR)-*, ( 50) 
-f We wish to express our thanks to Dr Lessen and Dr Sadler for giving us tables of the 

eigenvalues which they calculated; these tables were used to prepare figure 3. 
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a 

0.5 
1 *o 
2.0 
0.1 
1.0 
0.1 
1 .o 

R 
104 
5 x 103 

105 
104 
2 x 105 

2.5 x los 

2 x 104 

UR 
5 x lo3 
5 x  lo3 
5 x 103 
104 
1 0 4  
2 x 1 0 4  
2 x 104 

7 

A1 
6.129 
6.120 
6.083 
6.124 
6.124 
6.095 
6.126 

Fast modes 
h 

B, A2 
3.300 3.303 
3.301 3.311 
3.305 3.342 
3.309 3.304 
3-301 3.308 
3.292 3.314 
3.301 3.306 

7 

B2 
6.132 
6.134 
6.142 
6.129 
6.133 
6.141 
6.133 

7 

El 
3.117 
3.124 
3.135 
3.072 
3.143 
3.035 
3.158 

Slow modes 
A 

Pl E, 
1.675 5.192 
1.682 5.274 
1.702 5.473 
1.692 5.445 
1-721 5.581 
1.515 5.798 
1.752 5.844 

7 - 
P2 

1.180 
1.175 
1.247 
1.125 
1.149 
1.074 
1.169 

TABLE 3. Values of the coefficients in the asymptotic formulae for the eigenvalues for 
n = 2  

Fast modes Slow modes 
r A > 7 

?a A1 Bl A2 B2 El 
0 2.835 2.835 5.663 5.663 3.190 
1 4.851 2.271 2.291 4.848 3.168 
2 6.126 3.301 3.306 6.133 3.158 
3 4.553 7.444 7.439 4.554 3.154 
4 5-882 8-790 8.781 5.883 3.152 
5 10.150 7.243 13.090 9.987 3.151 

P I  

1.813 
1.766 
1.752 
1.756 
1-757 
14'79 

- 
E2 

6.324 
6.246 
5.844 
5.719 
5.639 
5.570 

'I 

F,  
1.664 
0.990 
1.169 
1.365 
1.513 
1.633 

TABLE 4. Values of the coefficients in the asymptotic formulae for the eigenvalues, see 
(50) and (51) 

and the low-lying slow modes are of the form 
C, = (Em + iFm) (aR)-*, 

where A,, B,, En, and qn are real positive parameters depending on n and, in 
the range 0.1 < a 6 10.0, slightly on a; m is an index labelling the modes, 
m = 1 being the least stable. 

Table 3 gives values of A,, B,, Em and F, for m = 1 and 2,  0.1 < a 6 2.0, 
aR = 5 x lo3, lo4 and 2 x lo4 and n = 2. It can be seen from this table that there 
is a very slight variation in these coefficients with a and an even smaller varia- 
tion with aR. It would appear, except perhaps for the second slow mode (coeffi- 
cients E ,  and F2), that these roots have converged to an asymptotic limit for 
large aR. The values of A,, B,, Em and Fm for a = 1.0, m = 1 and 2, and n = 0-5 
are given in table 4. The values for other a are only slightly different. Burridge & 
Drazin (1969) have published an asymptotic calculation of the stability of pipe 
flow which applies to the azimuthally varying as well as azimuthally symmetric 
modes. For R-tO, they obtain the same asymptotic variation that we do. 
(Their eigenfunctions are, in fact, our expansion functions.) For aR -t co, they 
obtain two sets of eigenvalues: fast modes with c varying as in (50) and slow 
modes with c varying as in (51). The form of this variation is in agreement with 
our results but the coefficients are quite different. According to Burridge & Drazin 
(see their equations (14) and (16)) A ,  = B, and E, = I?!. We find, in agreement 
with Pekeris, that this is true for n = 0, but (in complete agreement with Lessen 
et al. (1968) for n = 1) that these coefficients differ for n =# 0. 
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Graebel (1970) has very recently published an analytic calculation of the 
stability of pipe flow for small wavenumbers. He finds, in complete disagreement 
with our results, that the flow is unstable for n z 2 .  Graebel finds very low critical 
Reynolds numbers, 3 5 R$ 5 4 for n = 2, and comparatively large wavenumbers 
a 2 2 (k in Graebel’s notation). At such low Reynolds numbers (R  5 64) our 
calculations are extremely convergent (at least 15 eigenvalues have already 
converged at N = 20) and the eigenvalues are very close to A, as given in (42). 
Since the approximations used by Graebel are only valid for small a, it may be 
that the appearance of instability for large a is due to the breakdown of his 
approximation procedure. 

6. Conclusions 
We have shown that expansion techniques can be applied quite straight- 

forwardly to problems of three-dimensional disturbances. The most striking 
result of the calculation is that pipe flow appears to be stable to infinitesimal 
disturbances for all values of a, R and the azimuthal index n. In  all cases the 
least stable mode for large Reynolds number is a fast mode ( IcI -+ 1 as aR -+ 00) 

with 
C, = [I - A,(aR)-*] + iBnL(aB)-a, 

where A ,  and B, depend on the azimuthal index. This is in contrast to plane 
Poiseuille flow where the least stable mode is a slow mode, and the flow becomes 
unstable for moderate a and large but finite R. 

This work was begun while the authors were on the staff of the Hudson 
Laboratories of Columbia University and were supported by the Office of Naval 
Research under Contract Nonr-266(84); it  was continued and completed at  the 
authors’ present institutions. The calculations reported here were carried out 
at  the Columbia University Computer Center, the Stevens Institute of Technology 
Computer Center and the Computer Education and Research Center of Pratt 
Institute. 
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